
Blocks Documentation
Release 0.6.5

Bradley Axen

May 29, 2019

Contents

1 Install 3

2 Features 5

3 Full Contents 7
3.1 Quickstart . 7
3.2 Examples . 14
3.3 Core . 16
3.4 Filesystem . 18

Python Module Index 23

i

ii

Blocks Documentation, Release 0.6.5

Blocks provides a simple interface to read, organize, and manipulate structured data in files on local and cloud storage

Contents 1

Blocks Documentation, Release 0.6.5

2 Contents

CHAPTER 1

Install

pip install sq-blocks

To enable GCS support make sure to also install the Google Cloud SDK

3

https://cloud.google.com/sdk/docs/

Blocks Documentation, Release 0.6.5

4 Chapter 1. Install

CHAPTER 2

Features

import blocks

Load one or more files with the same interface
df = blocks.assemble('data.csv')
train = blocks.assemble('data/*[01].csv')
test = blocks.assemble('data/*[2-9].csv')

With direct support for files on GCS
df = blocks.assemble('gs://mybucket/data.csv')
df = blocks.assemble('gs://mybucket/data/*.csv')

The interface emulates the tools you’re used to from the command line, with full support for globbing and pattern
matching. And blocks can handle more complicated structures as your data grows in complexity:

5

Blocks Documentation, Release 0.6.5

Layout Recipe

blocks.assemble('data/**')``

blocks.assemble('data/g1/*')

blocks.assemble('data/*/part_01.pq')

blocks.assemble('data/g[124]/part_01.pq')

6 Chapter 2. Features

CHAPTER 3

Full Contents

3.1 Quickstart

3.1.1 Layout

In the simplest case, you might want to read your data from a single file. This is pretty easy in pandas, but blocks adds
additional support for inferring file types and support cloud storage:

import pandas as pd
import blocks
df = blocks.assemble('data.pkl') # same as pd.read_pickle
df = blocks.assemble('gs://mybucket/data.parquet')

Many projects need to combine data stored in several files. To support this, blocks makes a few assumptions about
your data. You’ve split it up into blocks, either into groups of columns (cgroups) or groups of rows (rgroups). You can
read all this data into a single dataframe in memory with one command:

import blocks
blocks.assemble('data/')

If all of your files are in one directory, then the rows will be concatenated:

data
part.00.pq
part.01.pq
part.02.pq

If your files actually contain the same rows but store different columns, you should place them in different folders with
corresponding names:

data
g0

part.00.pq

(continues on next page)

7

Blocks Documentation, Release 0.6.5

(continued from previous page)

g1
part.00.pq

g2
part.00.pq

In the most general case you can do both, laying out your data in multiple cgroups and rgroups - where each rgroup
should contain the same logical rows (e.g. different attributes of the same event)

data
g0

part.00.pq
part.01.pq
part.02.pq
part.03.pq

g1
part.00.pq
part.01.pq
part.02.pq
part.03.pq

g2
part.00.pq
part.01.pq
part.02.pq
part.03.pq

g3
part.00.pq
part.01.pq
part.02.pq
part.03.pq

This corresponds to the following dataframe structure:

8 Chapter 3. Full Contents

Blocks Documentation, Release 0.6.5

This pattern generalizes very well when you start collecting data from multiple sources and with enough content that
the entire dataset won’t comfortably fit into memory at once.

Blocks supports multiple data formats, including csv, hdf5, pickle, and parquet. Reads from these files are
handled by pandas libraries, so they support all of the options you expect like headers, index columns, etc. All of
the blocks interfaces below support passing keyword args to the read functions for the files (see the docstrings). The
files can be local (referenced by normal paths) or on GCS (referenced by paths like gs://bucket).

Note that rgroups are combined by simple concatenation, and cgroups are combined by a “natural left join”:
any shared columns are considered join keys. Key-based merging only makes sense with named columns, so make
sure any CSVs you use have a column header if you want to join cgroups.

3.1.2 Read

Assemble

Assemble is the primary data reading command, and can handle any of the layouts above. You can select subsets of
the data using glob patterns or the cgroups and rgroups arguments:

3.1. Quickstart 9

Blocks Documentation, Release 0.6.5

Layout Recipe

blocks.assemble('data/')

blocks.assemble('data/g1/*')
or
blocks.assemble('data/', cgroups=['g1'])

blocks.assemble('data/*/part.01.pq')
or
blocks.assemble('data/', rgroups=['part.
→˓01.pq'])

blocks.assemble('data/*/part.01.pq',
→˓cgroups=['g0', 'g1', 'g3'])
or
blocks.assemble(

'data/',
rgroups=['part.01.pq'],
cgroups=['g0', 'g1', 'g3']

)

10 Chapter 3. Full Contents

Blocks Documentation, Release 0.6.5

Iterate

Blocks also has an iterative option for performing operations on each of the blocks without loading them all into
memory at once:

import blocks

for cgroup, rgroup, df in blocks.iterate('data/'):
print(df.shape)

iterate supports the same syntax and features as assemble above, but instead of returning a merged dataframe,
it returns an iterator of (rgroup, cgroup, dataframe) where the rgroup and cgroup are the names of the
groups ('g0' and 'part.00.pq' from above).

iterate can also operate on multiple axes - the default is to iterate over every block separately. But if you specify
axis=0, then iterate will combine cgroups and iterate over rgroups, and for axis=1 it will iterate over the cgroups
while combining any rgroups.

3.1. Quickstart 11

Blocks Documentation, Release 0.6.5

Direction Recipe

iterate over one dataframe per rgroup
for rgroup, df in blocks.iterate('gs://
→˓path/to/data', axis=0):

print(df.shape)

iterate over one dataframe per cgroup
for cgroup, df in blocks.iterate('gs://
→˓path/to/data', axis=1):

print(df.shape)

Partitioned

Dask provides a great interface to a partitioned dataframe, and you can use blocks’ simple syntax to build a dask.
dataframe. Checkout the dask documentation for details on how to use the resulting object.

import blocks

need to have separately installed dask
dask_df = blocks.partitioned('data/*/part_0[1-4].pq')

dask_df.groupby('category').mean().compute()

12 Chapter 3. Full Contents

http://dask.pydata.org/en/latest/

Blocks Documentation, Release 0.6.5

3.1.3 Write

Place

If you want to put a dataframe into a single file, use place:

import blocks

blocks.place(df, 'data/part_00.pq')
blocks.place(df, 'gs://mybucket/data/part_00.pq')

Like with assemble for a single file, this is easy in pandas, but blocks infers the file type and has support for
cloud storage.

Divide

For paritioning your data, blocks also has a divide function. You’d use this to split up a single large dataframe in
memory into many rgroups and/or cgroups on disk, to help with parallelizing analysis. By default the blocks are
written as parquet files, but you can specify other extensions including .hdf5, .csv, and .pkl.

import blocks

divide into just row groups
blocks.divide(df, 'data/', n_rgroup=3)

data
part_00.pq
part_01.pq
part_02.pq

Divide can also handle column groups:

split into 10 rgroups and specific cgroups
cgroup_columns = {

'g0': ['id', 'timestamp', 'metadata'],
'g1': ['id', 'timestamp', 'feature0', 'feature1'],
'g2': ['id', 'timestamp', 'feature2', 'feature3'],
'g3': ['id', 'timestamp', 'feature4', 'feature5', 'feature6'],

}
blocks.divide(df, 'data/', 4, cgroup_columns=cgroup_columns)

data
g0

part.00.pq
part.01.pq
part.02.pq
part.03.pq

g1
part.00.pq
part.01.pq
part.02.pq
part.03.pq

g2
part.00.pq
part.01.pq

(continues on next page)

3.1. Quickstart 13

Blocks Documentation, Release 0.6.5

(continued from previous page)

part.02.pq
part.03.pq

g3
part.00.pq
part.01.pq
part.02.pq
part.03.pq

3.2 Examples

3.2.1 Inspect Data

You can use assemble to grab a small subset of your data

import blocks

df = blocks.assemble('data/*/part_00.pq')
df.describe()

This works great when dealing with data staged on GCS

import blocks

df = blocks.assemble('gs://bucket/*/part_00.pq')
df.describe()

3.2.2 Large Datasets

It’s common to end up with a dataset that won’t easily fit into memory. But you often still need to calculate aggregate
statistics on that data. For example, you might need to get a unique list of categories in one of your fields.

Iterate makes this easy:

import blocks

uniques = set()
for _, _, block in blocks.iterate('data/'):

uniques |= set(block['feature'])

or maybe you want to parallelize the process

import blocks
from multiprocessing import Pool

def unique_f1(block):
return set(block[-1]['feature'])

uniques_per_block = Pool(4).map(unique_f1, blocks.iterate('data/'))
uniques = reduce(lambda a, b: a | b, uniques_per_block)

And if you have dask installed the parallelization is even easier

14 Chapter 3. Full Contents

Blocks Documentation, Release 0.6.5

import blocks

uniques = blocks.partitioned('data')['feature'].unique().compute()

3.2.3 Batch Training

If you’re working with a tool like Keras, you might want to train a model on an iterator of batches without every
loading more than one partition into memory:

import blocks

def batch_generator(path):
for _, df in blocks.iterate(path, axis=0):

while df.shape[0] >= nbatch:
Grab a sample and drop from original
sub = df.sample(nbatch)
df.drop(sub.index, inplace=True)
yield sub.values

model.fit_generator(
generator=batch_generator('train/'),
validation_data=batch_generator('validate/'),

)

If you use an efficient file format like parquet, this simple code will be suprisingly fast. You should make sure that
you don’t use multiple cgroups in a situation like this, however, because merging can slow down the process.

3.2.4 Combining

If you end up with a dataset with multiple column groups, say because you grabbed your data from multiple sources,
you may want to merge accross those groups. However it is expensive to do this by loading the whole dataset into
memory. If you use the blocks structure you can merge each row partition separately and then save to new files. You
can even subdivide those files into smaller row groups to ensure that they don’t grow too large:

import blocks

offset = 0
for _, df in blocks.iterate(path, axis=0):

blocks.divide(df, 'combined/', n_rgroup=10, rgroup_offset=offset)
rgroup_offset += 10

3.2.5 Filesystem

Blocks provide a default filesystem that supports local files and GCS files. If you need additional functionality, you
can create a custom filesystem instance:

import blocks
from blocks.filesystem import GCSFileSystem

fs = GCSFileSystem()
df = blocks.assemble('gs://bucket/data/', filesystem=fs)

3.2. Examples 15

Blocks Documentation, Release 0.6.5

The default filesystem has support for GCS, and you can implement your own FileSystem class by inheriting from
blocks.filesystem.FileSystem. This can be used to extend blocks to additional cloud platforms, to support
encryption/decryption, etc. . .

3.3 Core

blocks.core.assemble(path, cgroups=None, rgroups=None, read_args={}, cgroup_args={},
merge=’inner’, filesystem=<blocks.filesystem.GCSFileSystem object at
0x7f0563e7c090>)

Assemble multiple dataframe blocks into a single frame

Each file included in the path (or subdirs of that path) is combined into a single dataframe by first concatenating
over row groups and then merging over cgroups. The merges are performed in the order of listed cgroups if
provided, otherwise in alphabetic order. Files are opened by a method inferred from their extension

Parameters

path [str] The glob-able path to all datafiles to assemble into a frame e.g. gs://example//,
gs://example//part.0.pq, gs://example/c[1-2]/ See the README for a more detailed expla-
nation

cgroups [list of str, optional] The list of cgroups (folder names) to include from the glob path

rgroups [list of str, optional] The list of rgroups (file names) to include from the glob path

read_args [optional] Any additional keyword args to pass to the read function

cgroup_args [{cgroup: kwargs}, optional] Any cgroup specific read arguments, where each
key is the name of the cgroup and each value is a dictionary of keyword args

merge [one of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’] The merge strategy to pass to
pandas.merge

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

Returns

data [pd.DataFrame] The combined dataframe from all the blocks

blocks.core.divide(df, path, n_rgroup=1, rgroup_offset=0, cgroup_columns=None, exten-
sion=’.pq’, convert=False, filesystem=<blocks.filesystem.GCSFileSystem object
at 0x7f0562f277d0>, prefix=None, **write_args)

Split a dataframe into rgroups/cgroups and save to disk

Note that this splitting does not preserve the original index, so make sure to have another column to track values

Parameters

df [pd.DataFrame] The data to divide

path [str] Path to the directory (possibly on GCS) in which to place the columns

n_rgroup [int, default 1] The number of row groups to partition the data into The rgroups will
have approximately equal sizes

rgroup_offset [int, default 0] The index to start from in the name of file parts e.g. If
rgroup_offset=10 then the first file will be part_00010.pq

cgroup_columns [{cgroup: list of column names}] The column lists to form cgroups; if None,
do not make cgroups Each key is the name of the cgroup, and each value is the list of
columns to include To reassemble later make sure to include join keys for each cgroup

16 Chapter 3. Full Contents

Blocks Documentation, Release 0.6.5

extension [str, default .pq] The file extension for the dataframe (file type inferred from this
extension

convert [bool, default False] If true attempt to coerce types to numeric. This can avoid issues
with ambiguous object columns but requires additional time

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

write_args [dict] Any additional args to pass to the write function

blocks.core.iterate(path, axis=-1, cgroups=None, rgroups=None, read_args={}, cgroup_args={},
merge=’inner’, filesystem=<blocks.filesystem.GCSFileSystem object at
0x7f0562f27710>)

Iterate over dataframe blocks

Each file include in the path (or subdirs of that path) is opened as a dataframe and returned in a generator of
(cname, rname, dataframe). Files are opened by a method inferred from their extension

Parameters

path [str] The glob-able path to all datafiles to assemble into a frame e.g. gs://example//,
gs://example//part.0.pq, gs://example/c[1-2]/ See the README for a more detailed expla-
nation

axis [int, default -1] The axis to iterate along If -1 (the default), iterate over both columns and
rows If 0, iterate over the rgroups, combining any cgroups If 1, iterate over the cgroups,
combining any rgroups

cgroups [list of str, or {str: args} optional] The list of cgroups (folder names) to include from
the glob path

rgroups [list of str, optional] The list of rgroups (file names) to include from the glob path

read_args [dict, optional] Any additional keyword args to pass to the read function

cgroup_args [{cgroup: kwargs}, optional] Any cgroup specific read arguments, where each
key is the name of the cgroup and each value is a dictionary of keyword args

merge [one of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’] The merge strategy to pass to
pandas.merge, only used when axis=0

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

Returns

data [generator] A generator of (cname, rname, dataframe) for each collected path If axis=0,
yields (rname, dataframe) If axis=1, yields (cname, dataframe)

blocks.core.partitioned(path, cgroups=None, rgroups=None, read_args={}, cgroup_args={},
merge=’inner’, filesystem=<blocks.filesystem.GCSFileSystem object at
0x7f0562f27750>)

Return a partitioned dask dataframe, where each partition is a row group

The results are the same as iterate with axis=0, except that it returns a dask dataframe instead of a generator.
Note that this requires dask to be installed

Parameters

path [str] The glob-able path to all datafiles to assemble into a frame e.g. gs://example//,
gs://example//part.0.pq, gs://example/c[1-2]/ See the README for a more detailed expla-
nation

3.3. Core 17

Blocks Documentation, Release 0.6.5

cgroups [list of str, or {str: args} optional] The list of cgroups (folder names) to include from
the glob path

rgroups [list of str, optional] The list of rgroups (file names) to include from the glob path

read_args [dict, optional] Any additional keyword args to pass to the read function

cgroup_args [{cgroup: kwargs}, optional] Any cgroup specific read arguments, where each
key is the name of the cgroup and each value is a dictionary of keyword args

merge [one of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’] The merge strategy to pass to
pandas.merge, only used when axis=0

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

Returns

data [dask.dataframe] A dask dataframe partitioned by row groups, with all cgroups merged

blocks.core.place(df, path, filesystem=<blocks.filesystem.GCSFileSystem object at 0x7f0562f27790>,
**write_args)

Place a dataframe block onto the filesystem at the specified path

Parameters

df [pd.DataFrame] The data to place

path [str] Path to the directory (possibly on GCS) in which to place the columns

write_args [dict] Any additional args to pass to the write function

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

3.4 Filesystem

class blocks.filesystem.DataFile
Bases: tuple

Attributes

handle Alias for field number 1

path Alias for field number 0

Methods

count()
index() Raises ValueError if the value is not present.

handle
Alias for field number 1

path
Alias for field number 0

class blocks.filesystem.FileSystem
Bases: object

18 Chapter 3. Full Contents

Blocks Documentation, Release 0.6.5

The required interface for any filesystem implementation

See GCSFileSystem for a full implementation. This FileSystem is intended to be extendable to support cloud
file systems, encryption strategies, etc. . .

Methods

access(self, paths) Access multiple paths as file-like objects
ls(self, path) List files correspond to path, including glob wild-

cards
store(self, bucket, files) Store multiple data objects

access(self, paths)
Access multiple paths as file-like objects

This allows for optimization like parallel downloads

Parameters

paths: list of str The paths of the files to access

Returns

files: list of DataFile A list of datafile instances, one for each input path

ls(self, path)
List files correspond to path, including glob wildcards

Parameters

path [str] The path to the file or directory to list; supports wildcards

store(self, bucket, files)
Store multiple data objects

This allows for optimizations when storing several files

Parameters

bucket [str] The GCS bucket to use to store the files

files [list of str] The file names to store

Returns

datafiles [contextmanager] A contextmanager that will yield datafiles and place them on the
filesystem when finished

class blocks.filesystem.GCSFileSystem(parallel=True, quiet=True)
Bases: blocks.filesystem.FileSystem

File system interface that supports both local and GCS files

This implementation uses subprocess and gsutil, which has excellent performance. However this can lead to
problems in very multi-threaded applications and might not be as portable. For a python native implementation
use GCSNativeFileSystem

Methods

3.4. Filesystem 19

Blocks Documentation, Release 0.6.5

access(self, paths) Access multiple paths as file-like objects
cp(self, sources, dest[, recursive]) Copy the files in sources to dest
local(self, path) Check if the path is available as a local file
ls(self, path) List files correspond to path, including glob wild-

cards
open(*args, **kwds) Access path as a file-like object
rm(self, paths[, recursive]) Remove the files at paths
store(*args, **kwds) Create file stores that will be written to the filesystem

on close

GCS = 'gs://'

access(self, paths)
Access multiple paths as file-like objects

This allows for optimization like parallel downloads

Parameters

paths: list of str The paths of the files to access

Returns

files: list of DataFile A list of datafile instances, one for each input path

cp(self, sources, dest, recursive=False)
Copy the files in sources to dest

Parameters

sources [list of str] The list of paths to copy

dest [str] The destination for the copy of source(s)

recursive [bool] If true, recursively copy any directories

local(self, path)
Check if the path is available as a local file

ls(self, path)
List files correspond to path, including glob wildcards

Parameters

path [str] The path to the file or directory to list; supports wildcards

open(*args, **kwds)
Access path as a file-like object

Parameters

path: str The path of the file to access

mode: str The file mode for the opened file

Returns

file: file A python file opened to the provided path (uses a local temporary copy that is
removed)

rm(self, paths, recursive=False)
Remove the files at paths

Parameters

20 Chapter 3. Full Contents

Blocks Documentation, Release 0.6.5

paths [list of str] The paths to remove

recursive [bool, default False] If true, recursively remove any directories

store(*args, **kwds)
Create file stores that will be written to the filesystem on close

This allows for optimizations when storing several files

Parameters

bucket [str] The path of the bucket (on GCS) or folder (local) to store the data in

files [list of str] The filenames to create

Returns

datafiles [contextmanager] A context manager that yields datafiles and when the context is
closed they are written to GCS

class blocks.filesystem.GCSNativeFileSystem(*args, **kwargs)
Bases: blocks.filesystem.GCSFileSystem

File system interface that supports GCS and local files

This uses the native python cloud storage library for read and write, rather than gsutil. The performance is signif-
icantly slower when doing any operations over several files (especially copy), but is thread-safe for applications
which are already parallelized. It stores the files entirely in memory rather than using tempfiles.

Methods

access(self, paths) Access multiple paths as file-like objects
cp(self, sources, dest[, recursive]) Copy the files in sources (recursively) to dest
local(self, path) Check if the path is available as a local file
ls(self, path) List all files at the specified path, supports globbing
open(*args, **kwds) Access paths as a file-like object
rm(self, paths[, recursive]) Remove the files at paths
store(*args, **kwds) Create file stores that will be written to the filesystem

on close

client
copy_single
is_dir
rm_single

access(self, paths)
Access multiple paths as file-like objects

This allows for optimization like parallel downloads. To help track which files came from which objects,
this returns instances of Datafile

Parameters

paths: list of str The paths of the files to access

Returns

files: list of DataFile A list of datafile instances, one for each input path

3.4. Filesystem 21

Blocks Documentation, Release 0.6.5

client(self)

copy_single(self, source, dest)

cp(self, sources, dest, recursive=False)
Copy the files in sources (recursively) to dest

Parameters

sources [list of str] The list of paths to copy, which can be directories

dest [str] The destination for the copy of source(s)

recursive [bool, default False] If true, recursively copy directories

is_dir(self, path)

ls(self, path)
List all files at the specified path, supports globbing

open(*args, **kwds)
Access paths as a file-like object

Parameters

path: str The path of the file to access

mode: str The file mode for the opened file

Returns

file: BytesIO A BytesIO handle for the specified path, works like a file object

rm(self, paths, recursive=False)
Remove the files at paths

Parameters

paths [list of str] The paths to remove

recursive [bool, default False] If true, recursively remove any directories

rm_single(self, path)

store(*args, **kwds)
Create file stores that will be written to the filesystem on close

This allows for optimizations when storing several files

Parameters

bucket [str] The path of the bucket (on GCS) or folder (local) to store the data in

files [list of str] The filenames to create

Returns

datafiles [contextmanager] A context manager that yields datafiles and when the context is
closed they are written to GCS

22 Chapter 3. Full Contents

Python Module Index

b
blocks.core, 16
blocks.filesystem, 18

23

Blocks Documentation, Release 0.6.5

24 Python Module Index

Index

A
access() (blocks.filesystem.FileSystem method), 19
access() (blocks.filesystem.GCSFileSystem method),

20
access() (blocks.filesystem.GCSNativeFileSystem

method), 21
assemble() (in module blocks.core), 16

B
blocks.core (module), 16
blocks.filesystem (module), 18

C
client() (blocks.filesystem.GCSNativeFileSystem

method), 21
copy_single() (blocks.filesystem.GCSNativeFileSystem

method), 22
cp() (blocks.filesystem.GCSFileSystem method), 20
cp() (blocks.filesystem.GCSNativeFileSystem method),

22

D
DataFile (class in blocks.filesystem), 18
divide() (in module blocks.core), 16

F
FileSystem (class in blocks.filesystem), 18

G
GCS (blocks.filesystem.GCSFileSystem attribute), 20
GCSFileSystem (class in blocks.filesystem), 19
GCSNativeFileSystem (class in blocks.filesystem),

21

H
handle (blocks.filesystem.DataFile attribute), 18

I
is_dir() (blocks.filesystem.GCSNativeFileSystem

method), 22

iterate() (in module blocks.core), 17

L
local() (blocks.filesystem.GCSFileSystem method), 20
ls() (blocks.filesystem.FileSystem method), 19
ls() (blocks.filesystem.GCSFileSystem method), 20
ls() (blocks.filesystem.GCSNativeFileSystem method),

22

O
open() (blocks.filesystem.GCSFileSystem method), 20
open() (blocks.filesystem.GCSNativeFileSystem

method), 22

P
partitioned() (in module blocks.core), 17
path (blocks.filesystem.DataFile attribute), 18
place() (in module blocks.core), 18

R
rm() (blocks.filesystem.GCSFileSystem method), 20
rm() (blocks.filesystem.GCSNativeFileSystem method),

22
rm_single() (blocks.filesystem.GCSNativeFileSystem

method), 22

S
store() (blocks.filesystem.FileSystem method), 19
store() (blocks.filesystem.GCSFileSystem method), 21
store() (blocks.filesystem.GCSNativeFileSystem

method), 22

25

	Install
	Features
	Full Contents
	Quickstart
	Examples
	Core
	Filesystem

	Python Module Index

