
Blocks Documentation
Release 0.9.4

Bradley Axen

Mar 01, 2022

CONTENTS

1 Install 3

2 Features 5
2.1 Quickstart . 7
2.2 Examples . 13
2.3 Core . 15
2.4 Filesystem . 18

Python Module Index 21

Index 23

i

ii

Blocks Documentation, Release 0.9.4

Blocks provides a simple interface to read, organize, and manipulate structured data in files on local and cloud storage

CONTENTS 1

Blocks Documentation, Release 0.9.4

2 CONTENTS

CHAPTER

ONE

INSTALL

pip install sq-blocks

3

Blocks Documentation, Release 0.9.4

4 Chapter 1. Install

CHAPTER

TWO

FEATURES

import blocks

Load one or more files with the same interface
df = blocks.assemble('data.csv')
train = blocks.assemble('data/*[0-7].csv')
test = blocks.assemble('data/*[89].csv')

With direct support for files on GCS
df = blocks.assemble('gs://mybucket/data.csv')
df = blocks.assemble('gs://mybucket/data/*.csv')

The interface emulates the tools you’re used to from the command line, with full support for globbing and pattern
matching. And blocks can handle more complicated structures as your data grows in complexity:

5

Blocks Documentation, Release 0.9.4

Layout Recipe

blocks.assemble('data/**')

blocks.assemble('data/g1/*')

blocks.assemble('data/*/part_01.pq')

blocks.assemble('data/g[124]/part_01.pq')
6 Chapter 2. Features

Blocks Documentation, Release 0.9.4

2.1 Quickstart

2.1.1 Layout

In the simplest case, you might want to read your data from a single file. This is pretty easy in pandas, but blocks adds
additional support for inferring file types and support cloud storage:

import pandas as pd
import blocks
df = blocks.assemble('data.pkl') # same as pd.read_pickle
df = blocks.assemble('gs://mybucket/data.parquet')

Many projects need to combine data stored in several files. To support this, blocks makes a few assumptions about your
data. You’ve split it up into blocks, either into groups of columns (cgroups) or groups of rows (rgroups). You can read
all this data into a single dataframe in memory with one command:

import blocks
blocks.assemble('data/')

If all of your files are in one directory, then the rows will be concatenated:

data
part.00.pq
part.01.pq
part.02.pq

If your files actually contain the same rows but store different columns, you should place them in different folders with
corresponding names:

data
g0

part.00.pq
g1

part.00.pq
g2

part.00.pq

In the most general case you can do both, laying out your data in multiple cgroups and rgroups - where each rgroup
should contain the same logical rows (e.g. different attributes of the same event)

data
g0

part.00.pq
part.01.pq
part.02.pq
part.03.pq

g1
part.00.pq
part.01.pq
part.02.pq
part.03.pq

g2
part.00.pq

(continues on next page)

2.1. Quickstart 7

Blocks Documentation, Release 0.9.4

(continued from previous page)

part.01.pq
part.02.pq
part.03.pq

g3
part.00.pq
part.01.pq
part.02.pq
part.03.pq

This corresponds to the following dataframe structure:

This pattern generalizes very well when you start collecting data from multiple sources and with enough content that
the entire dataset won’t comfortably fit into memory at once.

Blocks supports multiple data formats, including csv, hdf5, pickle, and parquet. Reads from these files are handled
by pandas libraries, so they support all of the options you expect like headers, index columns, etc. All of the blocks
interfaces below support passing keyword args to the read functions for the files (see the docstrings). The files can be
local (referenced by normal paths) or on GCS (referenced by paths like gs://bucket).

Note that rgroups are combined by simple concatenation, and cgroups are combined by a “natural left join”:
any shared columns are considered join keys. Key-based merging only makes sense with named columns, so make
sure any CSVs you use have a column header if you want to join cgroups.

8 Chapter 2. Features

Blocks Documentation, Release 0.9.4

2.1.2 Read

Assemble

Assemble is the primary data reading command, and can handle any of the layouts above. You can select subsets of
the data using glob patterns or the cgroups and rgroups arguments:

2.1. Quickstart 9

Blocks Documentation, Release 0.9.4

Layout Recipe

blocks.assemble('data/')

blocks.assemble('data/g1/*')
or
blocks.assemble('data/', cgroups=['g1'])

blocks.assemble('data/*/part.01.pq')
or
blocks.assemble('data/', rgroups=['part.
→˓01.pq'])

blocks.assemble('data/*/part.01.pq',␣
→˓cgroups=['g0', 'g1', 'g3'])
or
blocks.assemble(

'data/',
rgroups=['part.01.pq'],
cgroups=['g0', 'g1', 'g3']

)

10 Chapter 2. Features

Blocks Documentation, Release 0.9.4

Iterate

Blocks also has an iterative option for performing operations on each of the blocks without loading them all into memory
at once:

import blocks

for cgroup, rgroup, df in blocks.iterate('data/'):
print(df.shape)

iterate supports the same syntax and features as assemble above, but instead of returning a merged dataframe, it
returns an iterator of (rgroup, cgroup, dataframe) where the rgroup and cgroup are the names of the groups
('g0' and 'part.00.pq' from above).

iterate can also operate on multiple axes - the default is to iterate over every block separately. But if you specify
axis=0, then iterate will combine cgroups and iterate over rgroups, and for axis=1 it will iterate over the cgroups
while combining any rgroups.

Direction Recipe

iterate over one dataframe per rgroup
for rgroup, df in blocks.iterate('gs://
→˓path/to/data', axis=0):

print(df.shape)

iterate over one dataframe per cgroup
for cgroup, df in blocks.iterate('gs://
→˓path/to/data', axis=1):

print(df.shape)

2.1. Quickstart 11

Blocks Documentation, Release 0.9.4

Partitioned

Dask provides a great interface to a partitioned dataframe, and you can use blocks’ simple syntax to build a dask.
dataframe. Checkout the dask documentation for details on how to use the resulting object.

import blocks

need to have separately installed dask
dask_df = blocks.partitioned('data/*/part_0[1-4].pq')

dask_df.groupby('category').mean().compute()

2.1.3 Write

Place

If you want to put a dataframe into a single file, use place:

import blocks

blocks.place(df, 'data/part_00.pq')
blocks.place(df, 'gs://mybucket/data/part_00.pq')

Like with assemble for a single file, this is easy in pandas, but blocks infers the file type and has support for cloud
storage.

Divide

For paritioning your data, blocks also has a divide function. You’d use this to split up a single large dataframe in
memory into many rgroups and/or cgroups on disk, to help with parallelizing analysis. By default the blocks are
written as parquet files, but you can specify other extensions including .hdf5, .csv, and .pkl.

import blocks

divide into just row groups
blocks.divide(df, 'data/', n_rgroup=3)

data
part_00.pq
part_01.pq
part_02.pq

Divide can also handle column groups:

split into 10 rgroups and specific cgroups
cgroup_columns = {

'g0': ['id', 'timestamp', 'metadata'],
'g1': ['id', 'timestamp', 'feature0', 'feature1'],
'g2': ['id', 'timestamp', 'feature2', 'feature3'],
'g3': ['id', 'timestamp', 'feature4', 'feature5', 'feature6'],

}
blocks.divide(df, 'data/', 4, cgroup_columns=cgroup_columns)

12 Chapter 2. Features

http://dask.pydata.org/en/latest/

Blocks Documentation, Release 0.9.4

data
g0

part.00.pq
part.01.pq
part.02.pq
part.03.pq

g1
part.00.pq
part.01.pq
part.02.pq
part.03.pq

g2
part.00.pq
part.01.pq
part.02.pq
part.03.pq

g3
part.00.pq
part.01.pq
part.02.pq
part.03.pq

2.2 Examples

2.2.1 Inspect Data

You can use assemble to grab a small subset of your data

import blocks

df = blocks.assemble('data/*/part_00.pq')
df.describe()

This works great when dealing with data staged on GCS

import blocks

df = blocks.assemble('gs://bucket/*/part_00.pq')
df.describe()

2.2.2 Large Datasets

It’s common to end up with a dataset that won’t easily fit into memory. But you often still need to calculate aggregate
statistics on that data. For example, you might need to get a unique list of categories in one of your fields.

Iterate makes this easy:

import blocks

uniques = set()
(continues on next page)

2.2. Examples 13

Blocks Documentation, Release 0.9.4

(continued from previous page)

for _, _, block in blocks.iterate('data/'):
uniques |= set(block['feature'])

or maybe you want to parallelize the process

import blocks
from multiprocessing import Pool

def unique_f1(block):
return set(block[-1]['feature'])

uniques_per_block = Pool(4).map(unique_f1, blocks.iterate('data/'))
uniques = reduce(lambda a, b: a | b, uniques_per_block)

And if you have dask installed the parallelization is even easier

import blocks

uniques = blocks.partitioned('data')['feature'].unique().compute()

2.2.3 Batch Training

If you’re working with a tool like Keras, you might want to train a model on an iterator of batches without every loading
more than one partition into memory:

import blocks

def batch_generator(path):
for _, df in blocks.iterate(path, axis=0):

while df.shape[0] >= nbatch:
Grab a sample and drop from original
sub = df.sample(nbatch)
df.drop(sub.index, inplace=True)
yield sub.values

model.fit_generator(
generator=batch_generator('train/'),
validation_data=batch_generator('validate/'),

)

If you use an efficient file format like parquet, this simple code will be suprisingly fast. You should make sure that
you don’t use multiple cgroups in a situation like this, however, because merging can slow down the process.

14 Chapter 2. Features

Blocks Documentation, Release 0.9.4

2.2.4 Combining

If you end up with a dataset with multiple column groups, say because you grabbed your data from multiple sources,
you may want to merge accross those groups. However it is expensive to do this by loading the whole dataset into
memory. If you use the blocks structure you can merge each row partition separately and then save to new files. You
can even subdivide those files into smaller row groups to ensure that they don’t grow too large:

import blocks

offset = 0
for _, df in blocks.iterate(path, axis=0):

blocks.divide(df, 'combined/', n_rgroup=10, rgroup_offset=offset)
rgroup_offset += 10

2.2.5 Filesystem

Blocks provide a default filesystem that supports local files and GCS files. If you need additional functionality, you can
create a custom filesystem instance:

import blocks
from blocks.filesystem import GCSFileSystem

fs = GCSFileSystem()
df = blocks.assemble('gs://bucket/data/', filesystem=fs)

The default filesystem has support for GCS, and you can implement your own FileSystem class by inheriting from
blocks.filesystem.FileSystem. This can be used to extend blocks to additional cloud platforms, to support
encryption/decryption, etc. . .

2.3 Core

blocks.core.assemble(path, cgroups=None, rgroups=None, read_args={}, cgroup_args={}, merge='inner',
filesystem=<blocks.filesystem.base.FileSystem object>, tmpdir=None)

Assemble multiple dataframe blocks into a single frame

Each file included in the path (or subdirs of that path) is combined into a single dataframe by first concatenating
over row groups and then merging over column groups. A row group is a subset of rows of the data stored in
different files. A column group is a subset of columns of the data stored in different folders. The merges are
performed in the order of listed cgroups if provided, otherwise in alphabetic order. Files are opened by a method
inferred from their extension.

Parameters

path [str] The glob-able path to all data files to assemble into a frame e.g. gs://example//,
gs://example//part.0.pq, gs://example/c[1-2]/ See the README for a more detailed expla-
nation

cgroups [list of str, optional] The list of cgroups (folder names) to include from the glob path

rgroups [list of str, optional] The list of rgroups (file names) to include from the glob path

read_args [optional] Any additional keyword args to pass to the read function

cgroup_args [{cgroup: kwargs}, optional] Any cgroup specific read arguments, where each key
is the name of the cgroup and each value is a dictionary of keyword args

2.3. Core 15

Blocks Documentation, Release 0.9.4

merge [one of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’] The merge strategy to pass to pan-
das.merge

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

Returns

data [pd.DataFrame] The combined dataframe from all the blocks

blocks.core.divide(df, path, n_rgroup=1, rgroup_offset=0, cgroup_columns=None, extension='.pq',
convert=False, filesystem=<blocks.filesystem.base.FileSystem object>, prefix=None,
tmpdir=None, **write_args)

Split a dataframe into rgroups/cgroups and save to disk

Note that this splitting does not preserve the original index, so make sure to have another column to track values

Parameters

df [pd.DataFrame] The data to divide

path [str] Path to the directory (possibly on GCS) in which to place the columns

n_rgroup [int, default 1] The number of row groups to partition the data into The rgroups will
have approximately equal sizes

rgroup_offset [int, default 0] The index to start from in the name of file parts e.g. If
rgroup_offset=10 then the first file will be part_00010.pq

cgroup_columns [{cgroup: list of column names}] The column lists to form cgroups; if None,
do not make cgroups Each key is the name of the cgroup, and each value is the list of columns
to include To reassemble later make sure to include join keys for each cgroup

extension [str, default .pq] The file extension for the dataframe (file type inferred from this ex-
tension

convert [bool, default False] If true attempt to coerce types to numeric. This can avoid issues
with ambiguous object columns but requires additional time

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

prefix: str Prefix to add to written filenames

write_args [dict] Any additional args to pass to the write function

blocks.core.iterate(path, axis=-1, cgroups=None, rgroups=None, read_args={}, cgroup_args={},
merge='inner', filesystem=<blocks.filesystem.base.FileSystem object>, tmpdir=None)

Iterate over dataframe blocks

Each file include in the path (or subdirs of that path) is opened as a dataframe and returned in a generator of
(cname, rname, dataframe). Files are opened by a method inferred from their extension

Parameters

path [str] The glob-able path to all files to assemble into a frame e.g. gs://example//,
gs://example//part.0.pq, gs://example/c[1-2]/ See the README for a more detailed expla-
nation

axis [int, default -1] The axis to iterate along If -1 (the default), iterate over both columns and
rows If 0, iterate over the rgroups, combining any cgroups If 1, iterate over the cgroups,
combining any rgroups

cgroups [list of str, or {str: args} optional] The list of cgroups (folder names) to include from
the glob path

16 Chapter 2. Features

Blocks Documentation, Release 0.9.4

rgroups [list of str, optional] The list of rgroups (file names) to include from the glob path

read_args [dict, optional] Any additional keyword args to pass to the read function

cgroup_args [{cgroup: kwargs}, optional] Any cgroup specific read arguments, where each key
is the name of the cgroup and each value is a dictionary of keyword args

merge [one of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’] The merge strategy to pass to pan-
das.merge, only used when axis=0

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

Returns

data [generator] A generator of (cname, rname, dataframe) for each collected path If axis=0,
yields (rname, dataframe) If axis=1, yields (cname, dataframe)

blocks.core.partitioned(path, cgroups=None, rgroups=None, read_args={}, cgroup_args={}, merge='inner',
filesystem=<blocks.filesystem.base.FileSystem object>, tmpdir=None)

Return a partitioned dask dataframe, where each partition is a row group

The results are the same as iterate with axis=0, except that it returns a dask dataframe instead of a generator.
Note that this requires dask to be installed

Parameters

path [str] The glob-able path to all files to assemble into a frame e.g. gs://example//,
gs://example//part.0.pq, gs://example/c[1-2]/ See the README for a more detailed expla-
nation

cgroups [list of str, or {str: args} optional] The list of cgroups (folder names) to include from
the glob path

rgroups [list of str, optional] The list of rgroups (file names) to include from the glob path

read_args [dict, optional] Any additional keyword args to pass to the read function

cgroup_args [{cgroup: kwargs}, optional] Any cgroup specific read arguments, where each key
is the name of the cgroup and each value is a dictionary of keyword args

merge [one of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’] The merge strategy to pass to pan-
das.merge, only used when axis=0

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

Returns

data [dask.dataframe] A dask dataframe partitioned by row groups, with all cgroups merged

blocks.core.pickle(obj, path, filesystem=<blocks.filesystem.base.FileSystem object>)
Save a pickle of obj at the specified path

Parameters

obj [Object] Any pickle compatible object

path [str] The path to the location to save the pickle file, support gcs paths

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

blocks.core.place(df, path, filesystem=<blocks.filesystem.base.FileSystem object>, tmpdir=None, **write_args)
Place a dataframe block onto the filesystem at the specified path

2.3. Core 17

Blocks Documentation, Release 0.9.4

Parameters

df [pd.DataFrame] The data to place

path [str] Path to the directory (possibly on GCS) in which to place the columns

write_args [dict] Any additional args to pass to the write function

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

blocks.core.unpickle(path, filesystem=<blocks.filesystem.base.FileSystem object>)
Load an object from the pickle file at path

Parameters

obj [Object] Any pickle compatible object

path [str] The path to the location of the saved pickle file, support gcs paths

filesystem [blocks.filesystem.FileSystem or similar] A filesystem object that implements the
blocks.FileSystem API

2.4 Filesystem

class blocks.filesystem.base.FileSystem(**storage_options)
Bases: object

Filesystem for manipulating files in the cloud

This supports operations on local files and any other protocol supported by fsspec. This is a wrapper to fsspec
which provides backwards compatibility for blocks filesystems and a simplified interface.

Parameters

storage_options: Mapping[str, Mapping[str, Any]] Additional options passed to each filesys-
tem for each protocol e.g. {‘gs’: {‘project’: ‘example’}} to set the gs filesytem project to
example

Methods

copy(sources, dest[, recursive]) Copy the files in sources to dest
cp(sources, dest[, recursive]) Copy the files in sources to dest
isdir(path) Check if the path is a directory
ls(path) List files correspond to path, including glob wild-

cards
mkdir(path) Make directory at path
open(path[, mode]) Return a file-like object from the filesystem
remove(paths[, recursive]) Remove the files at paths
rm(paths[, recursive]) Remove the files at paths

copy(sources, dest, recursive=False)
Copy the files in sources to dest

Parameters

sources [list of str] The list of paths to copy

18 Chapter 2. Features

Blocks Documentation, Release 0.9.4

dest [str] The destination(s) for the copy of source(s)

recursive [bool] If true, recursively copy any directories

cp(sources, dest, recursive=False)
Copy the files in sources to dest

Parameters

sources [list of str] The list of paths to copy

dest [str] The destination(s) for the copy of source(s)

recursive [bool] If true, recursively copy any directories

isdir(path)
Check if the path is a directory

ls(path)
List files correspond to path, including glob wildcards

Parameters

path [str] The path to the file or directory to list; supports wildcards

mkdir(path)
Make directory at path

open(path, mode='rb', **kwargs)
Return a file-like object from the filesystem

The resultant instance must function correctly in a context with block.

Parameters

path: str Target file

mode: str like ‘rb’, ‘w’ See builtin open()

kwargs: Forwarded to the filesystem implementation

remove(paths, recursive=False)
Remove the files at paths

Parameters

paths [list of str] The paths to remove

recursive [bool, default False] If true, recursively remove any directories

rm(paths, recursive=False)
Remove the files at paths

Parameters

paths [list of str] The paths to remove

recursive [bool, default False] If true, recursively remove any directories

2.4. Filesystem 19

Blocks Documentation, Release 0.9.4

20 Chapter 2. Features

PYTHON MODULE INDEX

b
blocks.core, 15
blocks.filesystem.base, 18

21

Blocks Documentation, Release 0.9.4

22 Python Module Index

INDEX

A
assemble() (in module blocks.core), 15

B
blocks.core

module, 15
blocks.filesystem.base

module, 18

C
copy() (blocks.filesystem.base.FileSystem method), 18
cp() (blocks.filesystem.base.FileSystem method), 19

D
divide() (in module blocks.core), 16

F
FileSystem (class in blocks.filesystem.base), 18

I
isdir() (blocks.filesystem.base.FileSystem method), 19
iterate() (in module blocks.core), 16

L
ls() (blocks.filesystem.base.FileSystem method), 19

M
mkdir() (blocks.filesystem.base.FileSystem method), 19
module

blocks.core, 15
blocks.filesystem.base, 18

O
open() (blocks.filesystem.base.FileSystem method), 19

P
partitioned() (in module blocks.core), 17
pickle() (in module blocks.core), 17
place() (in module blocks.core), 17

R
remove() (blocks.filesystem.base.FileSystem method), 19
rm() (blocks.filesystem.base.FileSystem method), 19

U
unpickle() (in module blocks.core), 18

23

	Install
	Features
	Quickstart
	Layout
	Read
	Assemble
	Iterate
	Partitioned

	Write
	Place
	Divide

	Examples
	Inspect Data
	Large Datasets
	Batch Training
	Combining
	Filesystem

	Core
	Filesystem

	Python Module Index
	Index

